Exponential Smoothing With Seasonality Methods
Business  Forecasting  Methods  and  Techniques
Descriptive Statistics Analysis
Single & Multiple Moving Averages
Single & Multiple-Parameters Exponential Smoothing
Exponential Smoothing with Seasonality Methods
Decomposition Methods
Simple and Multiple Regression Analysis
Box-Jenkins (ARIMA)  Models
Multivariate Data Analysis
Home | About me

Exponential Smoothing With Seasonality Methods

 

 

The previous two pages explained the moving averages and exponential smoothing methods, which are suitable only for dealing with non-seasonal time series, whether they are stationary or non-stationary data. If the data are stationary, Moving Averages or Single Exponential Smoothing methods are appropriate. If the data series exhibit a linear trend, either Brown's linear one-parameter smoothing method or Holt's linear two-parameter smoothing method are appropriate. But if the data series are seasonal, these methods, on their own, can not handle the problem well. Therefore, Winter's three-parameters method which will be explained in this section, can handle the data with seasonality well.

 

 

Winter's 3-Parameter Trend and Seasonality Exponential Smoothing

If you look at Table 4.1, you see that there is a systemic error pattern occurs every fourth period (negative values). Only there is an exception at period 21 where there are twice negative values, because of randomness. Using Winter's method would be able to eliminate this kind systematic pattern in the errors. Winter's method is based on three smoothing equations - St for overall smoothing, bt for trend, and Ot for seasonality.
 

 

Overall Smoothing, (1)  
Trend Smoothing, (2)  
Seasonal Smoothing, (3)  
Forecast, (4)  

 

 

 

 

Table 4.1 shows applying the earlier three smoothing methods that had been discussed, to a seasonal data series. Looking at the descriptive statistics summary, it appears that the Holt's three-parameter smoothing method gives the smallest errors (MAE=72.80, MAPE=13.09, MSE=7265.55, and the standard deviation of errors is giving 85.24). However, there is too much smoothing that is done, and the every fourth-month periodic systemic errors also need to be eliminated. Clearly, we require the Winter's method to improve it, as shown in Table 4.2. The descriptive statistics in Table 4.2 shows that Winter's method gives the smallest errors among the four methods (MAE=28.61, MAPE=5.41, MSE=1102.76, standard deviation of errors =33.21).

 

In Figure 4.1, the Winter's method is super-imposed over the other three methods versus the original observed series. The original data clearly shows a linear trend with additive seasonality. The seasonal cycle repeats in almost every four periods. The Winter's method shows that the forecast (the yellow curve) trails the original data closely and yet not overly smoothed as was the case in the other three methods.

 

 

Table 4.1  Application of Single Exponential Smoothing, Linear 2-Parameter and 3-Parameter Linear Smoothing Methods To Seasonal Data

        Single Exponential
Smoothing, =0.35
Brown's One-Parameter Linear Exponential Smoothing, =0.2 Holt's Two-Parameter Linear Exponential Smoothing, =0.2,  =0.3
  Month Period
 t
Historical Sales
Xt
Forecast (SES)
Ft
Forecast Error
(SES)
Single Exponential Smoothing
St
Double Exponential Smoothing
Dt
Value of
a
Value of
b
Forecast
Ft+m
Forecast Error Smoothing Data
St
Smoothing Trend
bt
Forecast
St +btm
Forecast Error
Jan-06 1 292     292 292         292 -7.00    
Feb-06 2 315 292.00 23.00 296.60 292.92 300.28 0.920     291.00 -5.20    
Mar-06 3 362 300.05 61.95 309.68 296.27 323.09 3.352 301.20 60.80 301.04 -0.63 285.80 76.20
Apr-06 4 271 321.73 -50.73 301.94 297.41 306.48 1.134 326.44 -55.44 294.53 -2.39 300.41 -29.41
May-06 5 312 303.98 8.02 303.96 298.72 309.19 1.310 307.62 4.38 296.11 -1.20 292.14 19.86
Jun-06 6 339 306.78 32.22 310.96 301.17 320.76 2.450 310.50 28.50 303.73 1.44 294.91 44.09
Jul-06 7 428 318.06 109.94 334.37 307.81 360.94 6.641 323.21 104.79 329.74 8.81 305.17 122.83
Aug-06 8 317 356.54 -39.54 330.90 312.42 349.37 4.618 367.58 -50.58 334.24 7.52 338.55 -21.55
Sep-06 9 403 342.70 60.30 345.32 319.00 371.63 6.579 353.99 49.01 354.01 11.20 341.76 61.24
Oct-06 10 443 363.81 79.19 364.85 328.17 401.53 9.170 378.21 64.79 380.76 15.86 365.21 77.79
T Nov-06 11 512 391.52 120.48 394.28 341.40 447.17 13.222 410.70 101.30 419.70 22.79 396.63 115.37
E Dec-06 12 404 433.69 -29.69 396.23 352.36 440.09 10.966 460.39 -56.39 434.79 20.48 442.49 -38.49
S Jan-07 13 474 423.30 50.70 411.78 364.25 459.32 11.884 451.06 22.94 459.01 21.60 455.27 18.73
T Feb-07 14 512 441.04 70.96 431.83 377.76 485.89 13.516 471.20 40.80 486.89 23.48 480.61 31.39
Mar-07 15 611 465.88 145.12 467.66 395.74 539.58 17.980 499.40 111.60 530.50 29.52 510.37 100.63
Apr-07 16 487 516.67 -29.67 471.53 410.90 532.16 15.157 557.56 -70.56 545.42 25.14 560.02 -73.02
P May-07 17 558 506.29 51.71 488.82 426.48 551.16 15.585 547.31 10.69 568.04 24.39 570.56 -12.56
E Jun-07 18 637 524.39 112.61 518.46 444.88 592.04 18.395 566.75 70.25 601.35 27.06 592.43 44.57
R Jul-07 19 703 563.80 139.20 555.37 466.98 643.76 22.098 610.43 92.57 643.32 31.54 628.41 74.59
I Aug-07 20 522 612.52 -90.52 548.69 483.32 614.07 16.343 665.85 -143.85 644.29 22.36 674.86 -152.86
O Sep-07 21 557 580.84 -23.84 550.35 496.73 603.98 13.407 630.41 -73.41 644.72 15.79 666.65 -109.65
D Oct-07 22 655 572.49 82.51 571.28 511.64 630.93 14.911 617.39 37.61 659.41 15.45 660.51 -5.51
S Nov-07 23 784 601.37 182.63 613.83 532.08 695.58 20.438 645.84 138.16 696.69 22.00 674.86 109.14
Dec-07 24 591 665.29 -74.29 609.26 547.51 671.01 15.437 716.02 -125.02 693.15 14.34 718.69 -127.69
m=1 Jan-08 25   639.29           686.45       707.50  
m=2 Feb-08 26               701.88       721.84  
m=3 Mar-08 27               717.32       736.18  
                           
                           

 

 

Table 4.2  Application of Winter's Linear and Seasonal Exponential Smoothing To Seasonal Data

    Winter's Three-Parameter Linear & Seasonal Exponential Smoothing  =0.2 , =0.05 , =0.1 Single Exponential
Smoothing
Brown's Linear Exponential
Smoothing
Holt's Linear Exponential
Smoothing
Winter's Trend & Seasonality Exponential Smoothing
 

Period
 t

Historical Sales
Xt
Single Smoothing St Seasonal Smoothing  Ot Trend Smoothing
bt
Forecast
Ft+m
Forecast Error ei2 APE | ei | ei2 APE | ei | ei2 APE | ei | ei2 APE
  1 292   0.942                            
2 315   1.016                            
3 362 315.00 1.168                            
4 271 324.40 0.874 9.75                          
5 312 333.57 0.942 9.69                          
6 339 341.33 1.015 9.50 348.79 -9.79                      
7 428 353.97 1.170 9.81 409.68 18.32                      
8 317 363.55 0.874 9.79 318.01 -1.01                      
9 403 384.27 0.947 10.88 351.54 51.46                      
10 443 403.41 1.019 11.71 401.07 41.93 6271.82 17.877 64.79 4197.69 14.625 77.79 6052.02 17.561 41.93 1758.06 9.465
T 11 512 419.63 1.172 12.16 485.61 26.39 14514.62 23.531 101.30 10260.72 19.784 115.37 13310.85 22.534 26.39 696.19 5.153
E 12 404 437.87 0.877 12.77 377.42 26.58 881.51 7.349 56.39 3180.17 13.959 38.49 1481.28 9.527 26.58 706.38 6.579
S 13 474 460.62 0.951 13.77 426.74 47.26 2570.63 10.696 22.94 526.35 4.840 18.73 350.96 3.952 47.26 2233.38 9.970
T 14 512 479.99 1.022 14.33 483.47 28.53 5034.74 13.859 40.80 1664.57 7.969 31.39 985.13 6.130 28.53 814.05 5.573
15 611 499.69 1.175 14.86 579.50 31.50 21060.20 23.751 111.60 12453.57 18.264 100.63 10125.58 16.469 31.50 992.35 5.156
16 487 522.76 0.879 15.68 451.01 35.99 880.38 6.093 70.56 4978.51 14.488 73.02 5331.96 14.994 35.99 1295.28 7.390
P 17 558 548.10 0.954 16.65 512.10 45.90 2674.31 9.268 10.69 114.17 1.915 12.56 157.65 2.250 45.90 2106.73 8.226
E 18 637 576.52 1.026 17.83 576.90 60.10 12681.90 17.679 70.25 4935.59 11.029 44.57 1986.37 6.997 60.10 3611.74 9.434
R 19 703 595.15 1.175 17.91 698.26 4.74 19376.38 19.801 92.57 8568.74 13.167 74.59 5564.32 10.611 4.74 22.43 0.674
I 20 522 609.18 0.878 17.52 539.04 -17.04 8193.98 17.341 143.85 20694.10 27.558 152.86 23366.41 29.284 17.04 290.32 3.264
O 21 557 618.08 0.952 16.66 598.13 -41.13 568.27 4.280 73.41 5389.07 13.180 109.65 12023.82 19.686 41.13 1691.99 7.385
D 22 655 635.51 1.026 16.73 651.04 3.96 6807.08 12.596 37.61 1414.54 5.742 5.51 30.34 0.841 3.96 15.66 0.604
23 784 655.22 1.176 17.03 766.50 17.50 33353.09 23.294 138.16 19087.97 17.622 109.14 11911.25 13.921 17.50 306.34 2.232
24 591 672.41 0.878 17.05 590.34 0.66 5519.24 12.570 125.02 15628.98 21.153 127.69 16305.32 21.606 0.66 0.44 0.112
m=1 25         656.19   140388 220 1160 113095 205 1092 108983 196 429 16541 81
m=2 26         672.42                        
m=3 27         688.64                        
                                   

Test Period 10 to 24

               

Descriptive Statistics

SES Brown's
Method
Holt's
Method
Winter's
Method
                     
Mean Absolute Error 85.54 77.33 72.80 28.61                      
Mean Absolute Percentage Error 14.67 13.69 13.09 5.41                      
Mean Squared Error 9359.21 7539.65 7265.55 1102.76                      
Standard Deviation of Error 96.74 86.83 85.24 33.21                      
                                   

To initialize the Winter's forecasting method, we need to use at least one complete season's data (i.e., L periods =4) to determine the initial estimates of the seasonal indices, Ot-L. Let S3=X2 and calculate the single smoothing value for S4 base on S3=X2. The initial value of the Trend factor, b4, can be calculated using the following method:

Each of the terms as in above, until (XL+4 - X4) / L, is an estimate of the trend over the complete season (L=4).

Other methods for initializing can be created and their influence on later forecasts will depend on the length of the time series and the values of the three parameters.

Initializing values:
S3 =S2  
S4 =S3 + [0.2 * (X3 - S3)]
=315 + (0.2 * (362 - 315))   =324.40
 
O1 =[X1 / (X1 + X2 + X3 + X4) / 4]  
  =[292 / (292+315+362+271)/4]   292/310   =0.942  
O4 =271/310  =0.874  
b4 =[(X5 - X1)/4 + (X6 - X2) / 4 + (X7 - X3)/4 + (X8 - X4) / 4] / 4  
  =(5+6+16.5+11.5)/4   =9.75  
     
Calculating the test set:
S24 =0.2 (X24 / O20) + 0.8 (S23 + b23)  
  =0.2*(591/0.878) + 0.8*(655.22+17.03)   =672.41  
b24 =0.1(S24-S23) + 0.9(b23)  
  =0.1*(672.41-655.22)+0.9*(17.03)   =17.05  
O24 =0.05(X24/S24) + 0.95(O20)  
  =0.05*(591/672.41)+0.95*(0.878)   =0.878  
F24 =[S23 + b23 (1)] * O20   =(655.22+17.03(1))*0.878   =590.34  
F27 =[S24 + b24 (3)] * O21   =(672.41+17.05(3))*0.952   =688.64  

 

You can download the worksheet to have a better feel of the formula.

 

Figure 4.1  Application of Single Exponential Smoothing, Linear 2-Parameter and Linear 3-Parameter Smoothing,
and Winter's 
Linear and Seasonal Exponential Smoothing To Seasonal Sales Data

 

 

One of the problems in using Winter's method is in determining the values for the three parameters - , and that will minimize MSE or MAPE. The correct way to do this is to change the values of the parameters in their respective cells in Excel, and then observe the changes in the line graphs which you would have already plotted next to the spreadsheet table. An alternative is to write a Visual Basic macro to run through the upper and lower bound values you will set for the 3 parameters, and populate the return forecast values in a one or a few columns. Once the forecasts are done, you can plot the graphs to see the trend and smoothing effect after re-adjusting each of the range one at a time. Either way, it can be quite time-consuming.

 

Winter's method is just one of the several exponential smoothing methods that can handle linear trend and seasonality. There are other methods that can handle linear trend, and multiplicative seasonality.

Go To Top

 

 

 

 

 

This site was created in February 2007.
contact Tan, William     email: vbautomation@yahoo.com


free counters